ロジット対数線形分析は、説明変数とバイナリ応答変数の間の関係を調べるために使用される統計的手法である。この手法は、説明変数と応答変数の間に統計的に有意な関係があるかどうか、ある場合はその関係の強さを判断するために使用することができます。さらに、ロジット・ログ線形分析は、説明変数と応答変数の関係が、異なるグループ間でどのように変化するかを調べるために使用することができます。
MENU
- Home
- 今すぐ注文
- 見積依頼
- キャンペーン
- ソフトウェア
- Statistics 製品概要・価格
- Statistics 各製品説明
- SPSS Statistics Base(基本機能)
- SPSS Regression(回帰分析)
- SPSS Advanced Statistics(対応のある分散分析)
- SPSS Exact Tests(フィッシャーの正確確立検定)
- SPSS Custom Tables(集計表作成)
- SPSS Decision Trees(決定木分析)
- SPSS Missing Values(欠損値推定)
- SPSS Categories(コレスポンデンス分析)
- SPSS Conjoint(コンジョイント分析)
- SPSS Forecasting(時系列予測)
- SPSS Complex Samples(サンプル設計)
- SPSS Neural Networks(多重パーセプトロン(MLP))
- SPSS Direct Marketing(RFM分析)
- SPSS Amos(共分散構造分析)
- Statistics 稼働環境
- Statistics 最新バージョン情報
- Text Coder X for SPSS
- SPSS Modeler
- SPSS Statistics Grad Pack スタートパック
- SPSS 関連資料
- SMART ANNOTATOR
- Text Voice
- サービス
- トレーニング
- FAQ・サポート
- お問合せ
- Home
- 今すぐ注文
- 見積依頼
- キャンペーン
- ソフトウェア
- Statistics 製品概要・価格
- Statistics 各製品説明
- SPSS Statistics Base(基本機能)
- SPSS Regression(回帰分析)
- SPSS Advanced Statistics(対応のある分散分析)
- SPSS Exact Tests(フィッシャーの正確確立検定)
- SPSS Custom Tables(集計表作成)
- SPSS Decision Trees(決定木分析)
- SPSS Missing Values(欠損値推定)
- SPSS Categories(コレスポンデンス分析)
- SPSS Conjoint(コンジョイント分析)
- SPSS Forecasting(時系列予測)
- SPSS Complex Samples(サンプル設計)
- SPSS Neural Networks(多重パーセプトロン(MLP))
- SPSS Direct Marketing(RFM分析)
- SPSS Amos(共分散構造分析)
- Statistics 稼働環境
- Statistics 最新バージョン情報
- Text Coder X for SPSS
- SPSS Modeler
- SPSS Statistics Grad Pack スタートパック
- SPSS 関連資料
- SMART ANNOTATOR
- Text Voice
- サービス
- トレーニング
- FAQ・サポート
- お問合せ
ロジット対数線形分析とは
目次